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Abstract

This paper addresses an alternative description for brittle solids with strongly interacting microcracks. The basic idea
starts from the M-integral analysis customarily used in single crack problems. As an initial attempt, the discussion is
limited to the infinite two-dimensional cases and the microcracks are assumed to be stationary. It is proved from the
global-local coordinate translations that the M integral is divided into two distinct parts. First of them is induced from
the well-known relation between the integral and the stress intensity factors (SIFs) at all the crack tips (Freund, 1978).
The second is contributed from the two components of the J; vector (Knowles and Sternberg, 1972, Budiansky and
Rice, 1973) and the coordinates of each microcrack center. The later is concerned not only with the crack tip SIFs, but
also with the contribution arising from the traction-free surfaces of each crack (Herrmann and Herrmann, 1981). A
detailed proof for the vanishing nature of the J;, vector along a closed contour surrounding all the microcracks is
presented, from which the confusion about the dependence of the M integral on the origin selection of global coor-
dinates is clarified. Two numerical examples are shown in tables and figures to confirm the derived conclusions. It is
shown that the M integral is equivalent to the decrease of the total potential energy of the microcracking solids although
the strongly interacting situations are taken into account. Therefore, a simple relation between the M integral and the L
integral is established under the assumption mentioned above. It is concluded that the M-integral analysis, from the
physical point of view, does play important role and provide an effective measure in evaluating the damage level of
brittle solids with strongly interacting and randomly distributed microcracks. Although only the stationary microcracks
are considered in the present investigation, the derived conclusions could actually be extended to treat much more
useful problems, in which the multi-cracks may become critical and may grow during loading histories. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Nonlinear mechanical responses of microcracking solids have received considerable attention in the past
40 years (e.g., Kachanov, 1958; Kachanov, 1992, 1993; Chaboche, 1988a,b; Krajcinovic, 1989; Gross, 1982;
Chen, 1984; Horii and Nemat-Nasser, 1983,1985; Mori and Tanaka, 1973; Nemat-Nasser and Hori, 1990;
Benveniste, 1986; Christensen, 1990; Chen and Hasebe, 1998; Jun, 1991; Jun and Lee, 1991; Jun and Chen,
1994a,b; Budiansky and O’connell, 1976). As is now generally accepted, the existence, the growth and the
nucleation of microcracks in brittle solids are of significant importance in both mechanical and civil en-
gineering. The earliest work on this subject was given by Kachanov (1958) and several literature reviews
were given by Chaboche (1988a,b), Krajcinovic (1989), and Kachanov (1992, 1993). Now, it is the com-
monly recognized opinion that microcracks in brittle materials, e.g., concrete, rocks and ceramics, often
control overall deformation and failure mechanism, because the distributed microcracks in such materials
not only lead to macrocrack initiation and final fracture, but also induce progressive material damage
(deterioration or evolutionary damage). Nevertheless, the progressive material deterioration could be
measured through the decrease of strength, stiffness, toughness, stability and residual life of such materials.
Chaboche (1988a,b) reviewed some general features to continuum damage mechanics and summarized its
main possibilities to present definitions and measures of damage, the description of the mechanical be-
havior of evolution of the corresponding damage variables. Moreover, there have been a number of in-
vestigators, who focus their attention on the effective elastic moduli of two-dimensional (2D) brittle solids
with strongly interacting, randomly distributed microcracks. For example, Jun and Chen (1994a,b) pre-
sented their statistical micro-mechanical formulations to investigate the effective elastic moduli of 2D brittle
solids with interacting slit microcracks. Besides these, the nonlocal damage theory based on microme-
chanics of crack interactions was proposed (e.g., Bazant, 1986; Bazant and Cedolin, 1991; Zdenek and
Bazant, 1992). The three-dimensional problems were also treated (Budiansky and O’connell, 1976; Jun and
Lee, 1991; Kachanov and Laures, 1989; Kachanov, 1993).

On the other hand, within the framework of plane, linear fracture mechanics many path-independent
integrals were proposed. Among them, Rice’s J integral as well as the J; vector, the L integral, and the M
integral are extremely attractive (Rice, 1968; Knowles and Sternberg, 1972; Budiansky and Rice, 1973;
Kanninen and Popelar, 1985). However, to the present author’s knowledge, the above mentioned path-
independent integrals were always limited in single crack problems and no one in the open literature had
accounted for the roles the integrals play in multi-cracks interaction problems or microcrack damage
problems. Particularly, the implicit relation between the effective elastic moduli and the above mentioned
path-independent integrals remains unknown even in the simplest cases, where all microcracks are assumed
to be stationary (in other words, no microcracks are allowed to grow or nucleated during loading histories,
the so-called “‘stationary’” micro-mechanical models).

The purpose of the present work is not to present some advances in the continuum damage mechanics,
rather, the purpose is to supply the lack of investigation of conservation laws in microcrack damage
problems. After doing so, an alternative description or a new evaluation for microcrack damage in brittle
solids could be established. The basic idea starts from the M-integral analysis customarily used in single
crack problems (Knowles and Sternberg, 1972; Budiansky and Rice, 1973). The closed contour chosen to
calculate the integral either encloses all microcracks or encloses a typical microcrack completely. As an
initial attempt, the simplest cases only concerned with the stationary microcracks are considered and all the
microcracks are assumed to be fully open and not intersecting with each other. In Section 2, a detailed
proof for the vanishing nature of the J; vector is given under the assumption that the closed contour chosen
to calculate the J; vector encloses all the microcracks (or there are no other discontinuities outside of the
closed contour). And then, under the same assumption some lengthy manipulations are performed to prove
the independence of the M integral from the origin selection of global coordinates. It is found from the
global-local coordinate translations that the M integral is divided into two distinct parts for a cloud of
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microcracks in a 2D brittle solid. First of them is corresponding to the contribution arising from SIFs of
each crack formulated by Freund (1978), while the second is corresponding to the contribution induced
from the two components of the J; vector and the center coordinates of each crack in the global coordi-
nates. In Section 3, two examples are presented. They are concerned with four regularly distributed mi-
crocracks and 20 randomly distributed microcracks. Numerical results are shown in tables and figures,
which not only confirm the independence of the M integral from the selection of the global system, but also
reveal the equivalence between the M integral and the decrease of the total potential energy of the solid even
under strongly interacting crack situations. Therefore, a simple relation between the M integral and the L
integral in the present problem is derived under the assumption mentioned above.

Of the most interest is the implicit relation between the M integral and the reduction in the effective
elastic moduli. It is found that the value of the integral against the remote loading angle increases as the
moduli decrease and vice versa. The loading direction at which the maximum value of the integral occurs
coincides well with the largest loss in effective moduli. Particularly, numerical results for 20 randomly
distributed microcracks show that the value of the M integral is not sensitive to the remote loading di-
rection. This coincides well with the well-known conclusion that the randomly distributed microcracks
produce an isotropic overall elastic response (Jun and Chen, 1994a).

Although the present investigation is an initial attempt, which has not been proved to be universal to
include all aspects of microcracking brittle solids, it does provide an evidence and a possibility for estab-
lishing an alternative description or a new evaluation for microcracking damage based on the M-integral
analysis. Indeed, the present work reveals that the M integral does play an important role in damage
mechanics. At least, it provides an effective measure for the damage level of brittle solids with strongly
interacting microcracks in the so-called “stationary” micro-mechanical models. It is concluded that an
inherent relation does exist between the M integral and the effective elastic moduli for a microcracking
brittle solid. In other words, the effective elastic properties could be reformulated by the M integral, al-
though the detailed mathematical formulation between the moduli and the M integral remains to be ad-
equately investigated.

2. Independence of the M integral from the origin selection of the global coordinates

The definition of the M integral is formulated as (Knowles and Sternberg, 1972; Budiansky and Rice,
1973):

M = %(wx,n,- — Thuyx;)ds, (1)
c

which is customarily adopted in single crack problems (Herrmann and Herrmann, 1981). Here, w is the
strain energy density and 7; is the traction acting on the outside of a closed contour C, u;; =
Ou/ox; (1=1,2; i=1,2).

Consider a multi-cracks problem as shown in Fig. 1. Assume that the closed contour C encloses all the
cracks completely in a 2D brittle solid. A global coordinate system, say (x;,x,), with the origin O, is in-
troduced (Fig. 1). Here, it should be emphasized that Eq. (1) is defined in the global coordinate system (x;,
x»). Furthermore, a typical microcrack (k) is considered in Fig. 1 and a local coordinate system (xgk),x;k)) is

then introduced, which is parallel to (x;,x,), but its origin O(k) is different from the origin O. Here, é§k> and
.fg‘) are coordinates of the origin O(k) in the global system (x,x,), and the following relations are valid:
n =gl
(k) (k) (2)
X2 = 52 + X,
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Fig. 1. Strongly interacting microcracks in a 2D-brittle solid and the closed contours specially introduced.

In order to define the M integral in the local system (xﬁk),xgk)), a special closed contour C* is also in-

troduced, which encloses the microcrack (k) only. Thus

M® = f(wxl(k)ngk) . ~xl(»k)) ds (k=1,2,...,N), (3)
clk)
where the superscript (k) denotes the quantities defined in the local system (x(lk),xgk)).

Here, it has been assumed that all the microcracks are not intersecting with each other although the
microcrack concentrations are higher and microcrack spaces are closer. As pointed out by Jun and Chen
(1994a,b), in this case, the strong microcrack interactions occur and the effective medium theories are very
cumbersome to be appropriated. The multi-crack interaction problem shown in Fig. 1 could easily be
solved as treated by Gross (1982) and Chen (1984). The detailed numerical technique is no longer discussed
here. After doing so, the stress intensity factors at both tips of the kth microcrack denoted by K\, Kif),
KIUL‘), KI(fL) (k=1,2,...,N) could be given and the M® integral could then be evaluated by using Freund’s
formulation (1978):

K41 o 2 o\ 2 o 2 o\ 2
MO =S () (k) () (50 o @)

where u is the shear modulus of the brittle solid and k = 3 — 4v for plane strain, v is the Poisson’s ratio,
subscripts R and L denote the stress intensity factors at the right tip and left tip of the microcrack (k),
respectively, subscripts I and II denote the Mode I and Mode II fracture, respectively, and «; refers to the
half length of the kth microcrack.



Y.-H. Chen | International Journal of Solids and Structures 38 (2001) 3193-3212 3197

It is well known (Appendix A) that the value of M is independent of the rotation of the local system,
when it is transferred from (x(lk),x(zk)) to (xy?,ng)) with an oriented angle ¢, (Fig. 1). However, it is also seen
that the total contribution induced from the N microcracks to the M integral could not be given by using a

simple summation among M® (k=1,2,...,N). This means that

N
M#Y MY, (5)
=1
which does lead to a significant trouble for evaluating the M integral in multi-crack problems.

Indeed, it is not clear whether the M integral depends on the origin selection of the global coordinate
system as many previous researchers suspected. Moreover, how to calculate the value of the M integral for
multi-cracks problems is worthy of further investigation. For further details, the J; vector should be in-
troduced here:

1,2), (6)

Jk = %(Wﬂk — u,-,kT,-) dS (k

c

where k£ = 1, 2 denote the two components of the vector, i.e., J; =J and J.

Although Herrmann and Herrmann (1981) found the path-dependent nature of J, for a closed contour
surrounding only single tip of a finite crack, the forthcoming manipulations are always corresponding to
such a case, in which the closed contours either enclose all the microcracks or enclose a typical microcrack
completely. Therefore, both J; and J, are path independent although, as pointed out by Herrmann and
Herrmann (1981) and as will be seen below, the traction-free surfaces of the microcracks have contributions
to Jz.

The components of the vector expressed by Eq. (6) are dependent on the rotation of the coordinate
system from (x(lk),xgk)) to (x(lli),x(;i)) with an oriented angle ¢, (Fig. 1). The values of J,Ek> evaluated along

CW, respectively in the local systems (xﬁk),xgk)) and (x(lli),xéli)) are related by

Jl(k) = Jl(f) coS @, — Jz(f) sin g,

()
Jz(k) = Jff) sing, + Jz(f) cos @y,
where the subscript * denotes the quantities in the system (x&lf),ng)) shown in Fig. 1.
It is well known that (Herrmann and Herrmann, 1981)
’ K+ 1 " 2 " 2 P 2 i 2
o =S (k) (ki) - (&) - (ki)
! ®)

pn_ k-1 k) - (k k) g (k X
Jz(*) = 4u [KI(L)KI(IE - K1(R>K1(u)z] + Foars
where £, denotes the contribution of the traction-free surface of the kth microcrack to the second com-
ponent of the J; vector and
ay
« N gk
= [t —w)a, ©)
—a
where w' and w~ denote the boundary values on the upper and lower surfaces of the kth microcrack,
respectively, which could be calculated after the interaction problem shown in Fig. 1 is solved (Zhao and
Chen (1997a,b) or Appendix B).
Obviously, the values of the J; vector are not dependent on the location of the coordinate system or the
origin selection of the system. Therefore, in the global system (x;, x,), the values of J; could be evaluated by

using a simple summation among J,fk) derived in the local system (xi“,xgk))
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N N

Ji = ZJIW = Z(‘]l(k) cos g, — & sin ), (10)
k=1 k=1
N N

L= =" sing, + Y cosgy). (11)
k=1 k=1

It is proved numerically by the present author and the co-worker (Chen and Hasebe, 1998) that the total
contribution of the N microcracks to the J; and J, should vanish due to the remote uniform loading
conditions with no other discontinuities outside the closed contour C (also see e.g., Herrmann and Herr-
mann, 1981 for one single crack, Zhao and Chen, 1997a for multiple subinterface cracks):

N

Ji=>Y ) =0, (12)
=1
N

L=y S =0, (13)
=1

or
N
Z(Jl(f> cosp, —J sing,) =0, (14)

=~

=1

(Jl@ sin @, +J2(f> cos@,) = 0. (15)

M=

k=1

Indeed, Eqgs. (12) and (13) or Egs. (14) and (15) provide new conservation laws of the J; vector in
multiple crack interaction problems. The major assumption is that there are no other discontinuities outside
of the closed contour C chosen to calculate the J; and the J, integrals.

As so many people, to whom the present author discussed, suspect these laws (12) and (13), it seems
necessary to present a detailed proof to clarify the validity of the laws, which is based on such an important
concept as how to use the remote uniform stress—strain field correctly. See Fig. 1, where N cracks are
formed in a 2D-brittle solid. Introduce a closed but sufficient large contour I'n, =1+ 1L + 15+ I'r
surrounding all the cracks and introduce a smaller closed contour C; only surrounding the kth crack
completely (Fig. 1). According to the path-independent nature of the J; integral vector in the present
situation, it follows that

N
=YY, (16a)
k=1
N
Je=3 a0 (16b)
2 2
k=1

where the left terms are calculated over I',,, while the right terms are calculated over C; with
k=1,2,...,N, respectively. Since every term in the summation on the right side of Eq. (16a) or (16b),
generally speaking, is not equal to zero due to strong interaction among the cracks, it is not clear whether
the summation of N terms on the right side vanishes or not, as many researchers suspected.

Here, in order to account the remote uniform stress—strain field as well as the remote displacement field,
the closed rectangular contour I',, has been chosen as large as possible. It should be mentioned that the
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reason to introduce the rectangular closed contour rather than an arbitrary one is to significantly simplify
mathematical manipulations given below. If it is not so, e.g., an arbitrary smooth closed contour C; (also as
large as possible, see Fig. 1) is chosen instead of the rectangular one, the results calculated over I', and over
Cy will be the same due to the path-independent nature of the vector. It should be mentioned also that the
second component of the vector is path independent too in the present situation because the closed contour
is always chosen to be either surrounding all the cracks or surrounding a typical crack completely
(Herrmann and Herrmann, 1981). Although the traction-free surfaces of each crack leads to some nonzero
contribution to the second component, the path-independent nature has not been altered when the closed
contour is chosen in the present way (Herrmann and Herrmann, 1981).

Since dy =dx, =0in 'y and I';, and dx = dx; = 0 in I'. and IR, the left-hand side of Eq. (16a) becomes

Je :/ (—affnﬁu,-/ax)ds—&—/ (W dy) +/ (—0,1n10u;/0x) ds. (16¢c)
ri+r2 [L+TR [L+IR

Noting that n, =1 in I'y and n2 = —1in I'; and n; = 1 in I'y and n; = —1 in ', it follows that

e s [uad o [z ( [ [ )] vor] [uir- [wa]

(16d)

Obviously, the second term in Eq. (16d) vanishes because | fb dy — f dy] = 0, while the first term de-
pends on the value | f u;pdx — [ u;1dx] and the third term depends on the value [ [, u;;dy — f u; dy]. Tt
should be noted that u;; in the integral is defined at infinity since the rectangular closed contour has been
chosen as large as possible. It could be recognized that the remote displacement field should be linear with
respect to both x- and y-axes so that the uniform strain field at infinity could be deduced. In fact, the remote
uniform strain field does not depend on the configuration of the N cracks (whatever the array of the cracks
is symmetrical with respect to x =0 (or y =0) or not). Therefore, the asymptotic values at infinity u,,
should be constants and the value of | f u; 1 dx — f g Uil dx] should vanish.

This conclusion will become much clearer when d1V1d1ng the original problem shown in Fig. 1 into two
subproblems. First of them involves no cracks and the remote displacement field should be linear with
respect to both x- and y-axes, while the second involves N cracks with self-balance tractions acting on both
surfaces of each crack. The detailed configuration of such a subdivision is well known, which is no longer
discussed here. Nevertheless, the second subproblem yields zero remote displacement field at infinity, be-
cause the stresses as well as the strains induced from the self-balance tractions have an asymptotic nature
with the order of »~2 (for large values of » = y/x? +3?). Thus, the remote displacement field is only
dominated by the first subproblem, which could certainly lead to the results, u;;(on I't) = u;;(on I'y).
Indeed, this means that the first term or the third term in Eq. (16d) vanishes too, no matter how many
cracks are formed in the finite region shown in Fig. 1 and whatever the array of the cracks is symmetrical
with respect tox = 0 (or y = 0) or not. Therefore, Eq. (12) has been proved to be a new conservation law of
the J; (=J) integral. In fact, its validity has already been confirmed numerically by Chen and Hasebe
(1998). Similarly, a straightforward manipulation could be given for Eq. (13), which represents a new
conservation law of the J, integral and is no longer repeated here.

Obviously, such a vanishing nature of the vector does not depend on the shapes of the discontinuities
enclosed by the closed contour C (Fig. 1). Therefore, other discontinuities such as curve cracks, crack
bifurcations, crack growth, voids with any shapes, and inclusions, as enclosed by the contour C, will lead to
the same conclusions formulated by Eqgs. (12) and (13). Of course, the detailed expresses of the contribu-
tions induced from different shapes of discontinuities to the vector should be quite different, but the total
summation of the contributions should be zero. This topic is beyond the scope of the present investigation.
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It will be seen below that Eqgs. (12) and (13) or Egs. (14) and (15) provide two basic identities in the
present situation. They do lead to the independence of the value of M from the origin location of global
coordinate systems.

Turing back to the M-integral analysis, it follows that

N N
M= ZM(k) (x1,%2) = ; f{(wxini — Tjuyx;)ds o,

Ck

“‘))ni — Thuy, (x,@ + éf”ﬂ ds o,
k

{M (x40} +Z{ O+ 0I0Y = My My, (16¢)

where M®) ) is defined by Eq. (3) in the local system (x(1 ),x2 ) and its value is calculated by Eq. (4),
while M* (xl ,xz) is considered in the global system (x,x,). The subscripts N and A denote the net part and
the additional part of the M integral.

Intuitively, the first term in Eq. (16e), denoted by My and called as the net contribution of the N cracks,
does not influence the dependence of the M integral on the origin selection. Special attention should only be
devoted to the second term in the right-hand side of Eq. (16e), since it involves the global coordinates of
each crack center as well as the components of the J; vector contributed from the formation of each crack.
This term, denoted by My, has been called as the additional contribution of the N microcracks to the M
integral in the global system. Due to its existence, a considerable confusion arises. Many people believe that
the value of the M integral is dependent on the origin selection of the global coordinate system (x|, x;) since
different selections of the origin of the global coordinates lead to difference values of ¢\ and &\ This is the
major reason why the present author should perform so lengthy and so cumbersome manipulations to
clarify the confusion mentioned above. Only after doing so, could the role M integral plays be discussed.

Perform another coordinate transformation from (x;,x;) to (xo,x0). The later is parallel to the former
but originated at another point O, as shown in Fig. 1. The simple relations between the two coordinate
systems are:

-1 IMZ

=~
I

1

X1 = Xor — Ny,

X2 = X02 — 1.

(17)

The value of the M integral in the new global coordinate system (x;, x>) denoted by M, should be given
as

M, = j{ (wxoin; — Ty xo;) ds,

S () + (0 )+ (4, ) ),
=M+ nliJfk) + WZZJQU‘). (18)

Obviously, the last two terms in the right side of Eq. (18) vanish due to the conservation laws of the J;
vector formulated by Egs. (12) and (13) for multi-cracks interaction. It is then concluded that

My =M. (19)
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In other words, the value of the M integral does not depend on the origin selection of the global co-
ordinates, either on the movement of the origin, or on the coordinate rotation. The later conclusion could
be seen in the work done by Park and Earmme (1986) (also see Appendix A). It should be emphasized that
Eq. (19) is directly deduced from the new conservation laws (12) and (13) with no regards to the details of
micro-defects. This means that other defects such as curve cracks, growing cracks, voids with any shapes,
branched crack, and crack bifurcation during loading history do not alter the independence of the M in-
tegral from the origin selection if all of them are enclosed by the closed contour C in Fig. 1. Nevertheless,
different kinds of defects may contribute quite different values of the M integral and the growing micro-
cracks enclosed by C may increase the values of the M integral. This topic is beyond the scope of the present
investigation, which will be discussed in quite detail in the author’ separated paper.

3. Numerical examples

Two numerical examples are given in this section to provide necessary evidences of the role the M in-
tegral plays in microcrack damage problems. The first is concerned with four regularly distributed mi-
crocracks, while the second with 20 randomly distributed microcracks.

3.1. Regularly distributed microcracks

Consider four strongly interacting microcracks regularly distributed in a plane elastic body as shown in
Fig. 2. The body is loaded by the remote tensile stress gy inclined by an angle y with respect to the x,-axis.
Here, 2d and 2L refer to the distance between microcrack centers, 2a refers to the length of each micro-
crack, ¢ denotes the oriented angle of each crack with respect to the x(;-axis. Two coordinate systems, i.e.,

ol X b\”c"
N4

A a
2d - n -

Y
W
>

NG

Fig. 2. Four regularly arranged microcracks under the remote inclined tensile loads.
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(xo1,x02) and (xy,x,) are introduced, which are related by Eq. (17), taking ,/a = 0.8, n,/a =2.3,L/a =12,
and d/a = 1.2. The four microcracks are assumed to be fully open. This assumption could be ensured when
the values of the Mode I stress-intensity factor at every tip are positive. It should be mentioned here that the
purpose to present this example is not to study a real microcrack damage cell, rather, the purpose is to
confirm the above derived independence of the M integral and to show the inherent relation between the
value of the M integral and the reduction of the effective moduli arising from the formation of the four
cracks.

Calculated values of the M integral are normalized by

My = "; L (oo, (20a)

where a, refers to the average half length of all the microcracks. In this example, ay = a. The subscript R
refers to the remote loading level.

In order to ensure the assumption mentioned in Section 1 that all the cracks are stationary, non-growing,
the remote loading level is chosen in such a way that the numerical values of SIFs at every tip do not
become critical. The critical condition is formulated below

(Ki/Ki) + (Ku/Kue)” = 1, (20b)

where the subscript ¢ denotes the critical parameters of a certain brittle material. For example, for a certain
kind of Al,O; ceramic, Kj. = 0.259 MN/m*/? and Ky = 0.518 MN/m*/2. The assumption of non-growing
cracks is actually ensured when taking the half crack length gy to be 0.001 m and the remote loading o, less
than 2.737 MN/m?.

In fact, the conclusion derived in the above section could be derived in a quite different way based on the
energy-balance concept. As discussed by Herrmann and Herrmann (1981) for single crack problems, the
change of the total potential energy (CTPE) due to the formation of a crack in a plane elastic body could be
expressed by

U= /a oy Au;(x)dx  (i=1,2), (21)

a

where U refers to CTPE, o3y refers to the remote stress, Au;(x) is the displacement jump along the crack
surfaces.

By using the relations among o7, Au;(x) and M for a single crack in a uniform remote stress field
(Herrmann and Herrmann, 1981), it is easy to prove that

M =2U. (22)

However, as mentioned earlier, the M integral for multi-interacting cracks could not be given by using a
simple summation (Egs. (5) and (16e)). Therefore, it is not clear whether or not Eq. (22) is valid for multi-
cracks situations since the displacement jump along the surfaces of each crack is not only induced from the
remote loading, but also disturbed by the neighboring and interacting microcracks. In these situations, the
CTPE should be

N a
v=% / 2 (k) Aul (xg'?) dx®), (23)
k=1 v —a

where the local coordinate x*) is chosen for the kth crack only, oy (k) refers to the released stresses when the

kth crack is formed, N is the number of microcracks, and Aul(-k)(xgli)) is the displacement jump along the kth
crack surfaces induced from the remote loading as well as the interaction with other cracks. It is proved
numerically (Table 1) and mathematically (Appendix C) that the formulation (22) is still valid. This means
that, from the physical point of view, the M integral is identically equal to twice of CTPE such that a
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Table 1

Normalized values of the M integral and the CTPE due to the formation of the four microcracks shown in Fig. 2 taking ¢ = 15°
v (©) My Ma M M, 2U My
0 3.5686 —-0.0828 3.4858 3.4858 3.4858 3.7321
6 3.5442 —0.0875 3.4567 3.4567 3.4567 3.6942
10 3.5006 —0.0955 3.4051 3.4051 3.4051 3.6276
16 3.3931 —-0.1128 3.2803 3.2803 3.2803 3.4689
30 2.9405 -0.1571 2.7834 2.7834 2.7834 2.8660
46 2.1080 —-0.1596 1.9484 1.9484 1.9484 1.9396
60 1.2493 —-0.0972 1.1521 1.1521 1.1521 1.1340
76 0.4479 —0.0006 0.4473 0.4473 0.4473 0.4707
90 0.1860 0.0371 0.2231 0.2231 0.2231 0.2680

definite value of the M integral exists for multi-strongly interacting cracks. Thus, the value does, of course,
not depend on the selection of the global coordinates, either on the origin location, or on the coordinate
rotation. Moreover, this leads to a simple relation between the M integral and the L integral since Herr-
mann and Herrmann (1981) showed that the L integral represents the rotation energy release rate:

L=—lom/op. (24)

This relation has never been reported before.

Table 1 shows that the values of the M integral calculated respectively in the two coordinate systems
(x01,X02) and (x1,x,) (denoted by M, and M, respectively) coincide well with each other, which support the
conclusion (19) given in Section 2. Moreover, it is seen that Eq. (22) is valid in the four microcrack in-
teracting case shown in Fig. 2. This reveals that the M integral for a microcracking solid represents the
change of the total potential energy due to the formation of the microcracks. It could be imagined that the
M integral for an evolutionary damage represents the progressive energy release due to damage growth (i.e.,
microcrack growth, microcrack coalescence, new microcrack nucleation) (Chaboche, 1988a,b; Jun and
Chen, 1994a,b). This topic will no longer be discussed here for shortening the length of this paper.

Of great interest are the variable tendencies of the normalized values of the M integral against the
loading angle as shown in Fig. 3(a)—(g) taking the oriented angle ¢ to be 0°, 15°, 30°, 45°, 60°, 75°, and 90°,
respectively. Here, My denotes the net contribution of stress intensity factors at the eight tips of the four
cracks to the M integral, i.e., the first term in Eq. (16e). M, denotes the additional contribution induced
from the coordinates of the microcrack centers and the J,fk) vector of each crack to the M integral, i.e., the
second term in Eq. (16e). M (= M,) is the summation between My and M. Mr is specially introduced for
comparisons, which is calculated under the assumption of “Taylor’s Models” (Jun and Chen, 1994a), where
the microcrack interactions are entirely neglected.

It is seen from detailed comparisons between Fig. 3(a) and (g), Fig. 3(b) and (f), and Fig. 3(c) and (e) that
each pair shows mirror effect with respect to the line of y = 45° when the inclined loading angle i/ increases
from 0° to 90°. These results confirm the independence of the values of the M-integral from the rotation of
the preferred coordinate system. A certain loading angle in Fig. 3(a)—(c), say ¢ = 16° is just corresponding
to another certain loading angle in Fig. 3(g), (f) and (e) say, ¥y = 90 — 16 = 74° when the coordinate system
rotates 90°.

Of the most interest is the implicit relation between the values of M and the effective elastic moduli for
the microcracking solid. It is found that the maximum value of the M integral is just corresponding to the
direction along which the largest reduction of the effective elastic moduli occurs. For example, ¢ = 0° in
Fig. 3(a)—(c) or ¢ =90° in Fig. 3(e)—(g). Quite contrary, the minimum value of the M integral is just
corresponding to the direction along which the smallest reduction of the effective elastic moduli occurs. For
example, ¢ = 90° in Fig. 3(a)—(c) or ¢ = 0° in Fig. 3(e)—(g). Indeed, there really exists an inherent relation
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Fig. 3. (a)—(g). Normalized values of the M integral and the CTPE against the loading angle i taking different values of the microcrack
oriented angle ¢.

between the values of the M integral and the effective elastic moduli induced from microcracking along
different tensile loading directions. The larger value of the M integral along a tensile loading direction is, the
larger reduction of the effective elastic moduli along the direction is. On contrary, Fig. 3(d) shows that the
values of the M integral are not sensitive to the tensile loading direction since the four microcrack con-
figuration with ¢ = 45° represents a nearly uniform reduction of the effective elastic moduli.

It is also seen from Table 1 and Fig. 3(a)—(g) that the divergence between the values of the M integral and
those of Mt sometimes is remarkable due to neglecting the interacting effect among the four microcracks
(where Mt denotes the values calculated by using Talor’s model). It is concluded that the divergence be-
tween Talor’s model and that of Jun and Chen (1994a,b) could be evaluated by using the M-integral
analysis. In most cases from Fig. 3(a)-(g), Talor’s model overestimates the values of the M integral so that
overestimates the reduction of the effective elastic moduli for microcrack weakened brittle solids.



Y.-H. Chen | International Journal of Solids and Structures 38 (2001) 3193-3212 3205

(e) ()

35
B 25 [ i =
5 5
% ..... %
P18 i o] e NI A o] >
: g
: :
o [T . [T SO SRS s .
L 1 1 il n 1
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Loading angle ¥ Loading angle ¢
(9)
45
4 /;.—
35
2 3
% : 2 .
a BAVZE B R MN
3 25 : o !
: /| Ma
g 2 |- - .'.. / : -_M .
N L . A - ]
E 15 § Mr
- S : o
3 1 o 9=90°
05
U i s S
05 i I |~.~‘|_""'—'F"'T'_”T._-—
0 10 20 30 40 50 60 70 80 90
Loading angle ¥

Fig. 3. (continued)

3.2. Randomly distributed microcracks

Consider 20 strongly interacting microcracks randomly distributed in a plane elastic body as shown in
Fig. 4(a)—(d). Calculated values of the M integral are also normalized by Eq. (20a). Moreover, the remote
tensile loading is chosen in such a way that the stationary conditions of all the cracks should be satisfied.
This could be done by substituting the values of the SIFs at each tip of every crack one by one into Eq.
(20b) to ensure the tensile loading be less than the critical value.

Fig. 5(a)-(d) show the variable tendencies of the M integral against the loading angle, s for the crack
arrays shown in Fig. 4(a)—(d), respectively. It is seen that the values of the M integral are not sensitive to the
tensile loading direction. This conclusion coincides well with the well-known fact (Jun and Chen, 1994a,b)
that microcrack-weakened brittle solids show an isotropic nature, when microcracks are sufficiently ran-
domly distributed although the effective elastic moduli are reduced significantly. It could be seen also that
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(b)

Fig. 4. (a)—(d). Four kinds of 20 microcracks distributed randomly in a circular region.

the additional part M, always takes an in-neglected contribution to the M integral under strongly inter-
acting situations.

Of course, a real microcrack-weakened brittle solid in practice with, e.g., more than hundreds of mi-
crocracks is quite difficult to be evaluated by using the traditional fracture concept due to the intractable
large amount of the computation. For this reason, number of researchers focus their attention on the ef-
fective elastic moduli to account stiffness and stability of the solid with strongly interacting microcracks.
For example, Jun and Chen (1994a,b) used the mixed fracture criteria in their effective elastic moduli
methods. However, as pointed out by Kachanov (1993), what controls stiffness and what drives fracture in
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Fig. 5. (a)—(d). Normalized values of the M integral against the loading angle s for the four kinds of the 20 microcracks.

microcrack array settings is quite different. The first may shed little light on the second. From the dis-
cussions mentioned above, the present investigation does present a new way, from the phenomenological
point of view, to describe the microcrack-weakened problems in brittle solids. Although the present in-
vestigation is an initial attempt, which has not been proved to be universal to include all aspects of such
problems, it does provide an evidence and a possibility, that there exists an alternative evaluation for
microcracking brittle solids based on the M-integral analysis. Therefore, researchers may perform more
efforts on such a new description to study the nonlinear mechanical behaviors of microcracking brittle
solids. For example, the nondestructive technique (King and Herrmann, 1981) customarily used for single
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crack problems could be adopted to account the damage levels of microcracking brittle solid in experi-
mental practices.

4. Conclusions and remarks

From the above performed manipulations and numerical examinations, the following conclusions could
be given:

(1) There exist new conservation laws of the J; vector for an infinite 2D microcracking brittle solid. The
laws reveal that the total contributions induced from the formation of multi-cracks in the solid to the two
components of the vector vanish, providing that the closed contour chosen to calculate the vector encloses
all the microcracks or there are no other discontinuities outside of the closed contour.

(2) The M integral calculated along a closed contour surrounding all microcracks in an infinite 2D
microcracking solid is divided into two distinct parts. One of them (called the net part) is contributed by
microcrack tip stress intensity factors as addressed by Freund (1978), and the other (called the additional
part) is contributed by the microcrack center coordinates and the J; vector defined for each microcrack.
Although the additional part involves the microcrack center coordinates, the M integral does not depend
on the selection of the global coordinate system, either on the origin selection or on the coordinate rotation.
This conclusion is directly deduced from the conservation laws of the J, vector.

(3) Although Kanninen and Popelar (1985) pointed out that there has been apparent little effort to apply
the M integral in practical problems, the present investigation reveals that the M integral does play an
important role in the description of damaged brittle solids due to microcracking. Moreover, it does provide
an effective measure for the evaluation of damage level in some examples shown in this paper. In other
words, the present investigation provides some important evidences that micro-structural statistical in-
formation is actually embedded in the formulation of a phenomenological parameter: the M integral.

(4) The dependence of the M integral values on the remote tensile loading direction reveals that the
maximum value of the integral for a certain microcrack array coincides with the maximum loss direction in
stiffness, while the minimum value coincides with the minimum loss direction. This means that, from the
physical point of view, the M integral (whose value has apparent directional nature with respect to different
loads) is inherently related with the effective elastic moduli for stationary microcracking solids. Of course,
the detailed relation between the effective elastic moduli and the values of the M integral remains to be
adequately investigated.

(5) The M integral is proved numerically and mathematically to be identically equal to twice of the
decrease of the total potential energy due to the formation of the pre-existing microcracks. Thus, there
should be a simple relation between the M integral and the L integral, i.e., Eq. (24), providing that the
closed contour chosen to calculate the two integrals encloses all the microcracks or there are no other
discontinuities outside the contour.

(6) Potential applications of the new description based on the M-integral analysis are remarkable. For
example, the increasing values of the M integral during an evolutionary microcrack damage just represent
the progressive energy release due to the damage growth, e.g., microcrack growth, microcrack coalescence,
and new microcrack nucleation. This topic will inevitably require further investigation and will be discussed
in the author’s separate paper.

(7) The restriction of the present investigation is considerable since the conservation laws are only valid
for an infinite brittle solid. This restriction could be removed by evaluating the contribution induced from
the interface between two dissimilar materials to the J; vector, from which new formulations of the con-
servation laws are derived instead of Egs. (12) and (13). Only in this way, could the outside boundaries of a
finite microcracking solid be considered as a special kind of interface between air and the solid or between a
rigid body and the solid. This topic will be discussed in Part II of this series.
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Appendix A

Perform a coordinate transformation from (x;,x,) to (x],x;) with the same origin, but with an oriented
angle ¢. The M integral becomes the M* integral and the outside normal #; is related by

ny = njcos@ — nysing,

* « (A.1)
ny = n; s @ + n,Cos Q.
Thus,
Xil; = X101 + Xohy = X|N} + X505, (A.2)
Ty = Ty X7 (A.3)
and
j{(Wxini — Ty x;)ds = }{(Wx:‘nl* = Tuj x;)ds,
c (A4)

Le. M =M

where the superscript * denotes the quantities in the coordinate system (xj, x3).
It is proved that the value of the M integral does not depend on the rotation of the coordinated
system.

Appendix B

As discussed by Herrmann and Herrmann (1981), the traction-free surfaces of a crack have some
contribution to the second component of the J; vector. For the kth microcrack shown in Fig. 1, this

contribution could be calculated in the local system (x(lli),xgi))

2ay,

23
F :/ (W —w)dxlt, (B.1)

ar

where W' and W~ indicate the upper and lower boundary values along the crack surfaces of the strain
energy, which could be given as

(B.2)

where ¢ denotes xY? ,01.(¢) and o7, (¢) are the normal stresses parallel to the upper and lower crack surfaces,

respectively.
A special numerical technique was introduced by Zhao and Chen (1997a,b), from which a deduced
singular integral, i.e.,
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() al — s>ds (B.3)

aj _
niy/ai — 2 / l -
could be calculated. Here, P(s) and Q(s) are the so-called pseudo-tractions acting on both surfaces of the

kth microcrack.
Eq. (B3) is normalized as

\/7 / r/ak
where

u=s/ay. (B.5)
Expanding P(u)-iQ(u) into the second kind of the Chebyshev Polynomial U,(u) as follows:

\/1 — 12 du, (B.4)

P(u) — i0(u) = 23,.0,. .
with
=2 [ VTR0 - 1000 Uy .

and substituting Eq. (B6) into Eq. (B4), the following numerical technique is obtained

JT T
ZiW ZB e

where T;.1(t/ay) is the first kind of the Chebyshev polynomial.

(B.8)

Appendix C

The relation between the M integral and the change of the total potential energy is clarified below by
taking the integral closed contour as one runs nicely along surfaces of each crack, s, (k = 1,2,...,N). Due to
the traction-free condition on the surface, the expression of the M integral (1) is deduced to

M= j{wxinidl, (C.1)

where s = Y1 s, is the concourse of all closed contours along the surfaces of each crack.

According to the work of Budiansky and Rice (1973), a quasi-clastostatic boundary-value problem
associated with the 2D solid contained within the surface S + s is considered. Here, s refers to the traction-
free surfaces and the external loading is imposed only by traction on S.

Without changing the boundary conditions on S, the continuously varying sequence of static solutions
for the displacement u could be contemplated, which is generated as the plane specification of s is varied
with a time-like parameter ¢. The potential energy of the system at any time is
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Hz/ de—/ ﬁu,-dV—/X,-n,-ds, (C2)
() 40 N

where V(t) is the volume enclosed by S + s(¢), and, f;, X, and u; are the body force, the traction acting on S,
and the displacement in the body, respectively. Thus,

11 ) . dx; d
—:H:/ v'vdV—l—/ w—n;ds — — / f,-u,-dV—!—/Xm;dS . (C.3)
de V(1) v de de \ Jy s

Assuming that du;/d¢ is an admissible function in 7(7) and using the principle of the virtual work rate,
the first term and the third term in Eq. (C3) cancel. Therefore,

dI1 dx;

_— = —l : . 4
o » Wi ds (C4)

Suppose that s is the boundary of the multi-cracks and let
dx;
o= (C.5)
which directly leads to
dd—l;l = [ wx;n; ds. (C.6)

By comparing Eq. (C6) with Eq. (C1), it is clear that both equations are equivalent with each other.
Moreover, the solution of Eq. (C5) could be formulated as

X = C[et. (C7)

It is noted that Egs. (C6) and (C7) represent the self-similar expansion of the multi-cracks. This is the
reason why Budiansky and Rice (1973) explained the M integral as the energy release rate associated with
the self-similar expansion of a traction-free cavity. As known, the boundary s has a similar alteration form
to x; for plane problems, i.e., s = soe’ with s; as a reference boundary. Thus, w and u; are independent of 7 in
Eq. (C6). This directly leads to the following result

tdII ! 1
All = / Edt = / <62'/ Wein; ds0> dr = 3 (62’/ wein; ds0> with sy = se™’. (C.8)
—00 —00 s0 s0

It is obvious that Eq. (C8) with 5o = se™" is equal to the CTPE of the body under consideration since the
starting point and ending point of ¢ represent the initial non-crack state and the present cracked state,
respectively. By reconsidering Eq. (C6), it is concluded that

CTPE = Al = 1. (C.9)

References

Bazant, Z.P., 1986. Mechanics of distributed cracking. Appl. Mech. Rev. 39, 675-705.

Bazant, Z.P., Cedolin, L., 1991. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press,
New York, p. 12 (Chapter 12).

Benveniste, T., 1986. On the Mori-Tanaka’s method in cracked bodies. Mech. Res. Comm. 13, 193-201.

Budiansky, B., Rice, J.R., 1973. Conservation laws and energy-release rates. ASME J. Appl. Mech. 40, 201-203.

Budiansky, B., O’Connell, R.J., 1976. Elastic moduli of a cracked solid. Int. J. Solids Struct. 12, 81-97.



3212 Y.-H. Chen | International Journal of Solids and Structures 38 (2001) 3193-3212

Chaboche, J.L., 1988a. Continuum damage mechanics: part I — general concepts. ASME J. Appl. Mech. 55, 59-64.

Chaboche, J.L., 1988b. Continuum damage mechanics: part II — damage growth, crack initiation, and crack growth. ASME J. Appl.
Mech. 55, 65-72.

Chen, Y.Z., 1984. General case of multiple crack problems in an infinite body. Engng. Fract. Mech. 20, 591-597.

Chen, Y.H., Hasebe, N., 1998. A consistency check for strongly interacting multiple crack problem in isotropic, anisotropic, and
bimaterial solids. Int. J. Fract. 89, 333-353.

Christensen, R.M., 1990. A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids 38, 379-404.

Freund, L.B., 1978. Stress intensity factor calculation based on a conservation integral. Int. J. Solids Struct. 14, 241-250.

Gross, D., 1982. Spannungsintensitaetsfaktoren von RisssystemenTrans Stress Intensity Factors of System of Cracks. Ing.-Arch 51,
301-310 in German.

Herrmann, G.A., Herrmann, G., 1981. On energy release rates for a plane cracks. ASME J. Appl. Mech. 48, 525-530.

Horii, H., Nemat-Nasser, S., 1983. Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys. Solids 33, 155-
171.

Horii, H., Nemat-Nasser, S., 1985. Elastic fields of interacting inhomogeneities. Int. J. Solids Struct. 21, 731-745.

Jun, J.W., 1991. On two-dimensional self-consistent micromechanical damage models for brittle solids. Int. J. Solids Struct. 27, 227—
258.

Jun, JW., Lee, X., 1991. On three-dimensional self-consistent micromechanical damage models for brittle solids, part I: tensile
loadings. ASCE J. Engng. Mech. 117, 1495-1515.

Jun, J.W., Chen, T.M., 1994a. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks, part I: stational.
ASME J. Appl. Mech. 61, 349-357.

Jun, J.W., Chen, T.M., 1994b. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks, part II:
evolutionary damage models. ASME J. Appl. Mech. 61, 358-366.

Kachanov, L.M., 1958. Time of the rupture process under creep conditions. Izv. Akad. Nauk. SSR. Otd Tekh. Nauk. 8, 26-31.

Kachanov, M., Laures, J.P., 1989. Three-dimensional problems of strongly interacting arbitrarily located penny-shaped cracks. Int.
J. Solids Struct. 23, 11-21.

Kachanov, M., 1992. Effective elastic properties of cracked solids: critical review of dome basic concepts. Appl. Mech. Rev. 45, 304
33s.

Kachanov, M., 1993. Elastic solids of many cracks and related problems. Adv. Appl. Mech. 30, 259-428.

Kanninen, M.F., Popelar, C.F., 1985. Advanced Fracture Mechanics. Oxford University Press, New York.

King, R.B., Herrmann, G., 1981. Nondestructive evaluation of the J- and M-integrals. ASME J. Appl. Mech. 48, 83-87.

Knowles, J.K., Sternberg, E., 1972. On a class of conservation laws in linearized and finite elastostatics. Arch. Rat. Mech. Anal. 44,
187-211.

Krajcinovic, D., 1989. Damage mechanics. Mech. Mater. 8, 117-197.

Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21,
571-574.

Nemat-Nasser, S., Hori, M., 1990. Elastic solids with microdefects. In: Weng, G.J., Taya, M., Abe, H. (Eds.), Micromechanics and
Inhomogeneity. Springer, New York, pp. 137-159.

Park, J.H., Earmme, Y.Y., 1986. Application of conservation integrals to interfacial crack problems. Mech. Mater. 5, 261-276.

Rice, J.R., 1968. A path-independent integral and the approximation analysis of strain concentration by notches and cracks. ASME
J. Appl. Mech. 35, 297-320.

Zdenek, P., Bazant, P., 1992. Nonlocal damage theory based on micromechanics of crack interactions. ASCE J. Engng. Mech. 120,
593-617.

Zhao, L.G., Chen, Y.H., 1997a. Further investigation of subinterface cracks. Archive Appl. Mech. 67, 393-406.

Zhao, L.G., Chen, Y.H., 1997b. On the contribution of subinterface microcracks near the tip of an interface crack to the J-integral in
bimaterial solids. Int. J. Engng. Sci. 35, 387-407.



